Title Fundamentals of electrical engineering	Code 1010315311010320842
Field Power Engineering	Year / Semester
Specialty	Course Core
Hours Lectures: 1 Classes: 10 Laboratory: - Projects / seminars: -	Number of credits 5
	Language polish

Lecturer:

Prof., D.Sc., PhD Ryszard Nawrowsk	i,	
Ph.D Arkadiusz Dobrzycki,	Ph.D. J. Jajczyk,	
tel. +48 61 665 27 88, +48 61 665 23 82;		
e-mail: Ryszard.Nawrowski@put.poznan.pl		

Faculty:

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Obligatory course at the Faculty of Electrical Engineering, majoring in electrical engineering, extramural second degree studies.

Assumptions and objectives of the course:

Extending knowledge of basic theory of circuits. Knowledge of methods of calculating the nonlinear circuits, filters, and modeling of electrical circuits. Signal flow graphs.

Contents of the course (course description):

Linear and nonlinear elements. Nonlinear circuits for DC and AC. Graphical and numerical method for solving nonlinear circuits. Analysis and synthesis of magnetic circuits. Passive filters type k. Frequency response / damping. Active Filters with operational amplifiers. Modeling of electrical circuits. Block diagrams. Conversion of flowcharts. Signal flow graphs.

Introductory courses and the required pre-knowledge:

The fundamental rights of Electrotechnical Standardization. Classical method and function analysis of Laplace States transitional linear systems. Basics of the theory-way.

Courses form and teaching methods:

Lecture illustrated slides and simulation, accounting

Form and terms of complete the course - requirements and assessment methods:

Tests written for exercises.

Basic Bibliography:

Additional Bibliography: